Bachelor of Technology (Computer and Communication Engineering)(2016-17) Choice Based Credit System (CBCS)

SEMESTER-V

			TEACHING & EVALUATION SCHEME									
			TH	EORY		PRAC'	ΓICAL					
COURSE CODE	Category	COURSE NAME	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	Th	Т	P	CREDITS	
BTIT401	-	Discrete Structure	60	20	20	-	•	3	1	-	4	

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit;

COURSE OBJECTIVES

1. To provide the fundamentals of formal techniques for solve the problems in computational domain and algorithm development

COURSE OUTCOMES

- 1. Understand the notion of mathematical thinking, mathematical proofs, and algorithmic thinking, and be able to apply them in problem solving.
- 2. Understand the basics of discrete probability and number theory, and be able to apply the methods from these subjects in problem solving.
- 3. Be able to use effectively algebraic techniques to analyze basic discrete structures and algorithms.
- 4. Understand asymptotic notation, its significance, and be able to use it to analyze asymptotic performance for some basic algorithmic examples.
- 5. Understand some basic properties of graphs and related discrete structures, and be able to relate these to practical examples.

SYLLABUS

UNIT-I

Unit-I:Set Theory

Definition of Sets, Venn Diagrams, complements, Cartesian products, power sets, counting principle, cardinality and countability (Countable and Uncountable sets), proofs of some general identities on sets, pigeonhole principle. Relation: Definition, types of relation, composition of relations, domain and range of a relation, pictorial representation of relation, properties of relation, partial ordering relation. Function: Definition and types of function, composition of functions, recursively defined functions.

Chairperson
Board of Studies
Shri Vaishnav Vidyapeeth Vishwavidyalaya
Indore

Rojavas

^{*}Teacher Assessment shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks

Bachelor of Technology (Computer and Communication Engineering)(2016-17) Choice Based Credit System (CBCS)

Unit-II:Propositional logic

Proposition logic, basic logic, logical connectives, truth tables, tautologies, contradiction, normal forms(conjunctive and disjunctive), modus ponens and modus tollens, validity, predicate logic, universal and existential quantification. Notion of proof: proof by implication, converse, inverse, contrapositive, negation, and contradiction, direct proof, proof by using truth table, proof by counter example

Unit-III: Graph Theory

Terminology Graph Representation Graph isomorphism; Connectedness; Various graph properties; Euler & Hamiltonian graph; shortest paths algorithms. Trees: Terminology; Tree traversals; prefix codes; Spanning trees; Minimum spanning trees.

Unit-IV: Algebraic Structure

Binary composition and its properties definition of algebraic structure; Groyas Semi group, Monoid Groups, Abelian Group, properties of groups, Permutation Groups, Sub Group, Cyclic Group, Rings and Fields (definition and standard results).

Unit-V:Posets, Hasse Diagram and Lattices

Introduction, ordered set, Hasse diagram of partially, ordered set, isomorphic ordered set, well ordered set, properties of Lattices, bounded and complemented lattices. Combinatorics: Introduction, Permutation and combination, Binomial Theorem, Multimonial Coefficients Recurrence Relation and Generating Function: Introduction to Recurrence Relation and Recursive algorithms, Linear recurrence relations with constant coefficients, Homogeneous solutions, Particular solutions, Total solutions, Generating functions, Solution by method of generating functions.

TEXT BOOKS:

- 1. C.L.Liu, "Elements of Discrete Mathematics" Tata McGraw-Hill Edition, 4th Edition, 2012.
- 2. Kenneth H. Rosen, "Discrete Mathematics and its applications", McGraw Hill, 7th Edition, 2012.
- 3. V. Krishnamurthy, "Combinatories: Theory and Applications", East-West Press, 2nd Edition, 2008.
- 4. Seymour Lipschutz, M.Lipson, "Discrete Mathemataics" Tata McGraw Hill, 3rd Edition, 2009.

REFERENCES:

- 1. Trembley, J.P & Manohar; "Discrete Mathematical Structure with Application CS", McGraw Hill.
- 2. Bisht, "Discrete Mathematics", Oxford University Press, 2015.
- 3. Biswal,"Discrete Mathematics & Graph Theory", PHI, 3rd Edition, 2011.

Chairperson
Board of Studies
Shri Vaishnav Vidyapeeth Vishwavidyalaya

Rojavat

Bachelor of Technology (Computer and Communication Engineering)(2016-17) Choice Based Credit System (CBCS)

			TEACHING & EVALUATION SCHEME									
			TH	IEORY		PRAC'	TICAL					
COURSE CODE	Category	COURSE NAME	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	Th	Т	P	CREDITS	
BTCS502	-	Operating System	60	20	20	30	20	3	1	2	5	

 $\textbf{Legends} \hbox{: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit;}$

COURSE OBJECTIVES

The student will have ability to:

- 1. To learn the fundamentals of Operating Systems.
- 2. To study the mechanisms of Operating System to handle processes and threads and their communication.
- 3. To gain knowledge of process management concepts that includes architecture, Mutual exclusion algorithms, deadlock detection and recovery algorithms.
- 4. To learn the mechanisms involved in memory management in Operating System.
- 5. To know the components and management aspects of disc scheduling.

COURSE OUTCOMES

Upon completion of the subject, students will be able to:

- 1. To describe the detail structure of Operating System.
- 2. To design and Implement Process management Techniques in Operating System.
- 3. To calculate CPU Scheduling criteria.
- 4. To understand The Memory Management of Operating System.
- 5. To elaborate Disc Scheduling.

SYLLABUS

UNIT-I

Introduction to Operating System

Introduction and need of operating system, layered architecture/logical structure of operating system, Type of OS(Multiprogramming , Time Sharing, Real Time ,Networked, Distributed, Clustered, Hand

Chairperson
Board of Studies
Shri Vaishnav Vidyapeeth Vishwavidyalaya
Indore

Rojavat

Joint Registrar

Incore

^{*}Teacher Assessment shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

Bachelor of Technology (Computer and Communication Engineering)(2016-17) Choice Based Credit System (CBCS)

Held), operating system as resource manager and virtual machine, OS services, BIOS, System Calls/Monitor Calls, Firmware- BIOS, Boot Strap Loader.

Threads- processes versus threads, threading, concepts, models, kernel & user level threads, thread usage, benefits, multithreading models.

UNIT-II

Process Management:- Process model, creation, termination, states & transitions, hierarchy, context switching, process implementation, process control block, Basic System calls- Linux & Windows. Basic concepts, classification, CPU and I/O bound, CPU scheduler- short, medium, long-term, dispatcher, scheduling:- preemptive and non-preemptive, Static and Dynamic Priority Criteria/Goals/Performance Metrics, scheduling algorithms- FCFS, SJFS, shortest remaining time, Round robin, Priority scheduling, multilevel queue scheduling, multilevel feedback queue scheduling.

UNIT-III

Interprocess communication- Introduction to message passing, Race condition, critical section problem, Peterson's solution, semaphore, classical problems of synchronization Classical IPC Problems: Reader's & Writer Problem, Dinning Philosopher Problem, Sleeping Barber Problem etc... **Deadlock-** System model, resource types, deadlock problem, deadlock characterization, methods for deadlock handling, deadlock prevention, Deadlock Avoidance: Banker's algorithm, deadlock detection, recovery from deadlock.

UNIT-IV

Memory management- concepts, functions, logical and physical address space, address binding, degree of multiprogramming, swapping, static & dynamic loading- creating a load module, loading, static & dynamic linking, shared libraries, memory allocation schemes- first fit, next fit, best fit, worst fit and quick fit. Free space management- bitmap, link list/free list.

Virtual Memory- concept, virtual address space, paging scheme, pure segmentation and segmentation with paging scheme hardware support and implementation details, memory fragmentation, demand paging ,working set model, page fault frequency, thrashing, page replacement algorithms- optimal, FIFO,LRU; Bleady's anomaly; TLB (translation look aside buffer).

UNIT-V

File Management- concepts, naming, attributes, operations, types, structure, file organization & access (Sequential, Direct ,Index Sequential) methods, memory mapped files, directory structures one level, two level, hierarchical/tree, acyclic graph, general graph, file system mounting, file sharing, path name, directory operations, overview of file system in Linux & windows.

Input/output subsystems- concepts, functions/goals, input/output devices- block and character, spooling, disk structure & operation, disk attachment, disk storage capacity, disk scheduling algorithm-FCFS, SSTF, scan scheduling, C-scan schedule.

Chairperson Board of Studies Shri Vaishnav Vidyapeeth Vishwavidyalaya

Rejovat

Joint Registrar Shri Withow Wayspeeth Values/idyalog Incore

Bachelor of Technology (Computer and Communication Engineering)(2016-17) Choice Based Credit System (CBCS)

TEXT BOOKS:

- 1. Abraham Silberschatz,"Operating system concepts",7th,John Willey & Sons. INC, 2005
- 2. Andrew S.Tannanbaum, "Modern operating system", 3rd, Pearson Education, 2009
- 3. Dhananjay M. Dhamdhere, "Operating Systems: A concept Based Approach", 3rd TMH, 2012,
- 4. <u>SibsankarHaldar</u>, <u>Alex AlagarsamyAravind</u>,"Operating System", 8th ,Pearson Education India,, 2010.

REFERENCES:

- 1. Achyut S Godbole,"Operating System",,3rd TMH,2010.
- 2. William Stalling, "operating system" 7th, Pearson Education, ,2012.
- 3. Vijay Shukla, "Operating System", 3^{rd,} Kataria& Sons ,2010.
- 4. Singhal&Shivratri,"Advanced Concept in Operating Systems", TataMc-Graw Hill Education, edition 2001.

LIST OF EXPERIMENTS: (At least 10 based on Syllabus)

- 1. Study of BIOS, Bootstrap Program & System calls.
- 2. Study of Process Life Cycle.
- 3. Implement First Come First Serve CPU Scheduling.
- 4. Implement Non Preemptive Priority CPU Scheduling.
- 5. Implement Non Preemptive Shortest Job first CPU Scheduling.
- 6. Implement Preemptive Shortest Job first CPU Scheduling.
- 7. Implement Preemptive Priority CPU Scheduling.
- 8. Implement Round-Robin CPU scheduling.
- 9. Write a program to implement Semaphore.
- 10. Design and implement Deadlock Avoidance algorithm; Banker's Algorithm.
- 11. Write a program for Memory Management Algorithms e.g. First Fit, Best Fit, Worst Fit.
- 12. Demonstrate Virtual memory Techniques like, LRU, FIFO etc.
- 13. Implement First Come-First Serve Disk Scheduling Algorithm.
- 14. Implement Shortest Seek Time First Disk Scheduling Algorithm.
- 15. Implement Scan Scheduling Disk Scheduling Algorithm.
- 16. Implement Circular Scan Disk Scheduling Algorithm.
- 17. Implement Look Disk Scheduling Algorithm.

Chairperson
Board of Studies
Shri Vaishnav Vidyapeeth Vishwavidyalaya

Rojavas

Bachelor of Technology (Computer and Communication Engineering)(2016-17) Choice Based Credit System (CBCS)

		_	TEACHING & EVALUATION SCHEME										
			TH	IEORY		PRAC'	ΓICAL						
COURSE CODE	Category	COURSE NAME	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	Th	Т	P	CREDITS		
BTIT305	-	Analysis &Design of Algorithms	60	20	20	30	20	3	1	2	5		

Legends: L-Lecture; T-Tutorial/Teacher Guided Student Activity; P-Practical; C-Credit;Q/AQuiz/Assignment/Attendance, MST Mid Semester Test.

COURSE OBJECTIVES:

The student will have ability to:

- 1. Learn the algorithm analysis techniques.
- 2. Become familiar with different algorithm design techniques.
- 3. Understand the limitation of algorithm power.
- 4. Analyze the asymptotic performance of algorithms.
- 5. Synthesize efficient algorithms in common engineering design situations.

COURSE OUTCOMES

Upon completion of the subject, students will be able to:

- 1. Demonstrate a number of standard algorithms for problems in fundamental areas in computer Science and engineering such as sorting, searching, and problems involving graphs.
- 2. Analyze the time and space complexity of algorithm.
- 3. Critically analyze the different algorithm design technique for a given problem.
- 4. Analyze worst-case running times of algorithms using asymptotic analysis.
- 5. Develop the skills of using standard algorithm design techniques to develop efficient algorithms for new problems.

SYLLABUS

Unit-I:

Introduction - Algorithm, Pseudo code for expressing algorithms, Performance Analysis-Space complexity, Time complexity, Asymptotic Notation- Big oh notation, Omega notation, Theta notation and Little oh notation, Probabilistic analysis, Amortized analysis, Mathematical background for algorithm analysis, Randomized and recursive algorithm. Comparison of various algorithms based on this technique, example binary search, merge sort, quick sort, Stassen's matrix multiplication..

Unit-II:

Greedy Algorithms - Greedy choice, optimal substructure property, minimum spanning trees - Prim's

Chairperson
Board of Studies
Shri Vaishnav Vidyapeeth Vishwavidyalaya

Rejound

^{*}Teacher Assessment shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

Bachelor of Technology (Computer and Communication Engineering)(2016-17) Choice Based Credit System (CBCS)

and Kruskal's algorithm, Dijkstra's shortest path using arrays and heaps, fractional knapsack, and Huffman coding.

UNIT-III

Concept of dynamic programming, problems based on this approach such as 0/1 knapsack, multistage graph, reliability design, Floyd-Warshall algorithm, Longest increasing subsequence, matrix chain multiplication.

Introduction to Internet algorithm - Strings and patterns matching algorithm, String Matching: Boyer Moore algorithm.

UNIT-IV

Backtracking - The general method, 8 queen problem, sum of subsets, Graph coloring, Hamiltonian cycles, Knapsack problem.

Branch and Bound - The method, LC search, 15 puzzle: An example. Bounding and FIFO branch andbound, LC branch and bound, 0/1 knapsack problem, TP efficiency considerations.

UNIT-V

NP-completeness - reduction amongst problems, classes NP, P, NP-complete, and polynomial time reductions.

Graph - Graphs, Undirected Graph, Directed Graph, Traversing Graphs, Depth First Search, Breath First Search, special tree like B tree, B+ tree and red black tree.

TEXT BOOKS:

- 1. Ellis Horowitz, Sarataj Sahni, S. Rajsekaran, "Fundamentals of computer Algorithms" University press.
- 2. Anany V. Levitin,"Introduction to the Design and Analysis of Algorithms", Pearson Education publication, Second Edition.
- 3. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, "Introduction to Algorithms", 2nd Edition, MIT Press/McGraw Hill, 2001
- 4. Michael Goodrich & Roberto Tamassia, "Algorithm design foundation, analysis and internet examples", Second Edition, Wiley student Edition.

REFERENCES:

- 1. S. Baase, S and A. Van Gelder, "Computer Algorithms: Introduction toDesign and Analysis", 3rd edition. Addison Wesley, 2000
- 2. Kenneth Berman, Jerome Paul "Algorithm: sequential, parallel and distributed", Cengage Learning
- 3. Mark Allen Weiss, "Data Structure & Algorithm Analysis in C++", Third Edition, Pearson Education.
- 4. R.C.T. Lee, S.Tseng, R.C. Chang and T. Tsai, Introduction to Design and Analysis of Algorithms: A strategic approach, McGraw Hill.
- 5. Allen Weiss, Data structures and Algorithm Analysis in C++ education.
- 6. Richard Johnson Baugh and Marcus Schaefer, Algorithms, Pearson Education.

Chairperson
Board of Studies
Shri Vaishnav Vidyapeeth Vishwavidyalaya

Rojavat

Bachelor of Technology (Computer and Communication Engineering)(2016-17) Choice Based Credit System (CBCS)

LIST OF EXPERIMENTS:

- 1. Implement Linear Search and determine the time required to search an element. Repeat the experiment for different values of n, the number of elements in the list to be searched.
- 2. Implement Recursive binary search and determine the time required to search an element. Repeat the experiment for different values of n, the number of elements in the list to be searched.
- 3. Sort a given set of elements using the Heapsort method and determine the time required to sort the elements. Repeat the experiment for different values of n, the number of elements in the list to be sorted.
- 4. Sort a given set of elements using Merge sort method and determine the time required to sort the elements. Repeat the experiment for different values of n, the number of elements in the list to be sorted
- 5. Sort a given set of elements using Quick sort method and determine the time required to sort the elements. Repeat the experiment for different values of n, the number of elements in the list to be sorted
- 6. Write a Program for Strassen's Matrix Multiplication.
- 7. Write a Program for Minimum Cost Spanning Tree of a given undirected graph using Kruskal's algorithm.
- 8. Write a Program for Minimum Cost Spanning Tree of a given undirected graph using Prim's algorithm.
- 9. Implement Fractional Knapsack problem using greedy method.
- 10. From a given vertex in a weighted connected graph, find the shortest paths to other vertices using Dijkstra's algorithm.
- 11. Implement Warshall algorithm.
- 12. Implement BFS and DFS Algorithm for graph.
- 13. Write a program for travelling salesman problem.

Chairperson
Board of Studies
Shri Vaishnav Vidyapeeth Vishwavidyalaya
Indore

Rojavat

Bachelor of Technology (Computer and Communication Engineering)(2016-17) Choice Based Credit System (CBCS)

			TEACHING & EVALUATION SCHEME									
			TH	EORY		PRAC	ΓICAL					
COURSE CODE	Category	COURSE NAME	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	Th	Т	P	CREDITS	
BTCS503	-	Computer Graphics & Multimedia	60	20	20	30	20	3	0	2	4	

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit;

COURSE OBJECTIVES:

The student will have ability to:

- 1. Understood basic concepts of computer graphics.
- 2. Acquire knowledge about drawing basic shapes such as lines, circle ellipse, polygon.
- 3. Shall be able to perform processing of basic shapes by various processing algorithms /techniques.
- 4. Acquire knowledge about two and three dimensional transformations.
- 5. Shall be able to apply the transformation algorithms to the basic shapes.
- 6. Shall be able to perform Multimedia Operation.

COURSE OUTCOMES:

Upon completion of the subject, students will be able to:

- 1. Understood basic concepts of computer graphics
- 2. Acquire knowledge about drawing basic shapes such as lines, circle ellipse, polygon and shall be able to perform processing of basic shapes by various processing algorithms /techniques.
- 3. Acquire knowledge about two and three dimensional transformations and shall be able to apply the transformation algorithms to the basic shapes.
- 4. Shall have the basic knowledge of windowing and clipping and shall be able to apply various algorithms of clipping.
- 5. Acquire knowledge about Visible Surface Detection methods, Illumination Models and Surface Rendering
- 6. Acquire knowledge to apply advanced techniques such as fractals, introduction to open GL and Multimedia Systems.

UNIT I

Shri Vaishnav Vidyapeeth Vishwavidyalaya

Rojavas

^{*}Teacher Assessment shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

Bachelor of Technology (Computer and Communication Engineering)(2016-17) Choice Based Credit System (CBCS)

Introduction to Computer Graphics:- What is Computer Graphics?, Where Computer Generated pictures are used, Elements of Pictures created in Computer Graphics Graphics display devices, Graphics input primitives and Devices. **Introduction to openGL:-** Getting started Making pictures, Drawing basic primitives Simple interaction with mouse and keyboard

UNIT II

Points and Lines, Antialiasing **Line Drawing Algorithm:-**DDA line drawing algorithm, parallel drawing algorithmBresenham's drawing algorithm with example.

Circle and Ellipse generating algorithms:-Mid-point Circle algorithm with example

Mid-point Ellipse algorithmMid-point Ellipse algorithm with example **Parametric Cubic Curves:**Bezier curvesB-Spline curves

Filled Area Primitives:-Scan line polygon fill algorithm, Pattern fill algorithm Inside-Outside Tests, Boundary fill algorithms, Flood fill algorithms

UNIT III

2D Geometric Transformations

Basic transformation, Matrix representation and Homogeneous Coordinates Composite transformationOther transformations.Transformation between coordinated systems.Window to Viewport coordinate transformation,

Clipping operations – Point clipping, Line clipping:-Cohen – Sutherland line clippingLiang – Barsky line clippingMidpoint subdivision

Polygon Clipping-Sutherland – Hodgeman polygon clippingWeiler – Atherton polygon clipping.3D object representation methods B-REP, sweep representations, CSG

Basic transformations-Translation, Rotation, Scaling

Other transformations-Reflection,Rotation about an arbitrary axis Composite transformations Projections – Parallel and Perspective 3D clipping

UNIT IV

3D Geometric Transformations and 3D Viewing Classification of Visible Surface Detection algorithm:-Translation, Rotation, Scaling

Other transformations:-Reflection,Rotation about an arbitrary axis Composite transformations Projections,Back Surface detection method Depth Buffer method Scan line method BSP tree method, Area Subdivision method.

UNIT V

Multimedia System: An Introduction, Multimedia hardware, Multimedia System Architecture. Data & File Format standards.i.e RTF, TIFF, MIDI, JPEG, DIB, MPEG, Audio: digital audio, MIDI, processing sound, sampling, compression. Video: Avi, 3GP, MOV, MPEG, compression standards, compression through spatial and temporal redundancy. Multimedia Authoring.

Chairperson
Board of Studies
Shri Vaishnav Vidyapeeth Vishwavidyalaya

Rojavat

Bachelor of Technology (Computer and Communication Engineering)(2016-17) Choice Based Credit System (CBCS)

TEXT BOOKS:

- 1. Sinha and Udai, "Computer Graphics", Tata McGraw Hill
- 2. Parekh "Principles of Multimedia" Tata McGraw Hill
- 3. Prabhat k Andleigh, KiranThakral, "Multimedia System Design" PHI Pub.
- 4. Donald Hearn and M.P. Becker "Computer Graphics" Pearson Pub.

REFERENCES:

- 1. Computer Graphics, C Version, 2e Paperback 2002
- 2. Foley, Vandam, Feiner, Huges, "Computer Graphics: Principles & Practice", Pearson Education, second edition 2003.
- 3. Judith Jeffcoate, "Multimedia in practice technology and Applications", PHI, 1998.
- 4. David F Rogers, "Procedural elements for Computer Graphics", Tata McGraw Hill, Second Edition.
- 5. Foley, VanDam, Feiner and Hughes, "Computer Graphics Principles & Practice in C", Second edition, Pearson Education.
- 6. David Hillmaa, "Multimedia Technology & Applications, Delmar, 1998.

LIST OF EXPERIMENTS:

- 1. Implement DDA Line Drawing algorithm
- 2. Implement Bresenham's line drawing algorithm.
- 3. Implement Mid-Point circle drawing algorithm.
- 4. Implement Mid-Point ellipse drawing algorithm.
- 5. Implement cubic Bezier curve.
- 6. Implement a menu-driven program for 2D transformations.
- 7. Implement Line clipping algorithm using Cohen-Sutherland.
- 8. Implement Polygon Clipping using Sutherland Hodgeman.
- 9. Implement Scan line fill algorithm.
- 10. Study of Multimedia and Program for Flash.

Chairperson
Board of Studies
Shri Vaishnav Vidyapeeth Vishwavidyalaya

Rojavos

Bachelor of Technology (Computer and Communication Engineering)(2016-17) Choice Based Credit System (CBCS)

		-	TEACHING & EVALUATION SCHEME									
			THEORY			PRAC	ΓICAL					
COURSE CODE	Category	COURSE NAME	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	Th	Т	P	CREDITS	
BTIT511	-	Wireless Communication Networks	60	20	20	30	20	3	1	2	5	

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit;

COURSE OBJECTIVES

The student will have ability to:

- 1. Understand the fundamental of wireless communication system.
- 2. Describes radio propagation models and wireless channel effects.
- 3. Knows fundamental concept of cellular radio concepts.
- 4. Explains various wireless communication network systems, standards and applications.

COURSE OUTCOMES

Upon completion of the subject, students will be able to:

- 1. Demonstrates wireless communication systems design and working.
- 2. Investigate various advanced techniques for wireless communications.
- 3. Constructs design architectures for different Wireless Systems.
- 4. Evaluates the emerging trends in Wireless communication.

SYLLABUS

UNIT-I

Introduction to Wireless Communication System:Evolution of mobile communications, Mobile Radio System around the world, Types of Wireless communication System, Comparison of Common wireless system, Trend in Cellular radio and personal communication. Cellular Networks generations, Wireless LocalLoop(WLL), Wireless Local Areanetwork(WLAN), Bluetooth and Personal Area Networks.

UNIT-II

The Cellular Concept- System Design Fundamentals:Cellular system, Hexagonal geometry cell and concept of frequency reuse, Channel Assignment Strategies Distance to frequency reuse ratio, Channel &co-channel interference reduction factor, Handoff Strategies, Improving Coverage & Capacity in Cellular System, Micro cell zone concept, Channel antenna system design considerations.

Chairperson
Board of Studies
Shri Vaishnav Vidyapeeth Vishwavidyalaya
Indore

Rojavas

^{*}Teacher Assessment shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

Bachelor of Technology (Computer and Communication Engineering)(2016-17) Choice Based Credit System (CBCS)

UNIT-III

Mobile Radio Propagation Model, Small Scale Fading and diversity: Large scale path loss:-Free Space Propagation loss equation, Path-loss of NLOS and LOS systems, Reflection, Ray ground reflection model, Diffraction, Scattering, Link budgetdesign, Max. Distance Coverage formula, Empirical formula for path loss,Indoor and outdoor propagation models, Small scale multipath propagation, Impulse model for multipath channel, Delay spread, Feher's delay spread, Types of small scale Fading, Rayleigh and rician distribution.

UNIT-IV

Multiple Access Techniques: Introduction, Comparisons of multiple Access Strategies TDMA, CDMA, FDMA, OFDM, CSMA Protocols.

Mobile Network And Transport Layers :Mobile IP , Dynamic Host Configuration Protocol, Mobile Ad Hoc Routing Protocols, Multicast routing, TCP over Wireless Networks , Indirect TCP , Snooping TCP , Mobile TCP .

Wireless Systems: GSM system architecture, Radio interface, Protocols, Localization and calling, Handover, Authentication and security in GSM, GSM speech coding, Concept of spread spectrum, CDMA forward channels, CDMA reverse channels, Soft handoff, CDMA features, Power control in CDMA, Performance of CDMA System, GPRS system architecture.

UNIT-V

Introduction to Wi-Fi, WiMAX, ZigBee Networks, Software Defined Radio, UWB Radio, Wireless Ad-hoc Network and Mobile Portability, Security issues and challenges in a Wireless network.

Application Layer: WAP Model, Mobile Location based services, WAP Gateway, WAP protocols, wireless bearers for WAP, WML, WMLScripts.

TEXT BOOKS:

- 1. Jochen Schiller, "Mobile Communications", Second Edition, Pearson Education,
- 2. William Stallings, "Wireless Communications and Networks", Pearson Education.
- 3. William D Stanley: Network Analysis with Applications, Pearson Education
- 4. Roy Choudhary D: Network and systems, New Age Publication.
- 5. Wireless Communication, Theodore S. Rappaport, Prentice hall

REFERENCES:

- 1. Kaveh Pahlavan, Prasanth Krishnamoorthy, "Principles of Wireless Networks", First
- 2. Edition, Pearson Education, 200UNIT III.
- 3. Uwe Hansmann, Lothar Merk, Martin S. Nicklons and Thomas Stober, "Principles of Mobile Computing", Springer, 200UNIT III.
- 4. C.K.Toh, "AdHoc Mobile Wireless Networks", First Edition, Pearson Education, 2002.
- 5. Wireless digital communication, KamiloFeher, PH.

LIST OF EXPERIMENTS:

Rojavat

1. Implementation of Link state routing algorithm.

Chairperson
Board of Studies
Shri Vaishnav Vidyapeeth Vishwavidyalaya
Indore

Bachelor of Technology (Computer and Communication Engineering)(2016-17) Choice Based Credit System (CBCS)

			TEACHING & EVALUATION SCHEME								
			TH	IEORY		PRAC	ΓICAL				
COURSE CODE	Category	COURSE NAME	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	Th	Т	P	CREDITS
BTCS511	-	Artificial Intelligence	60	20	20	30	20	3	1	2	5

- 2. Implementation of data encryption and decryption.
- 3. Implementation of VoIP using OPNET network simulator.
- 4. Install Network Simulator 2 and study network topologies.
- 5. Write a Program for Free space Propagation Model & Frequency Selective Fading Model.
- 6. Write a Program for Ground Reflection (Two-ray) Model.

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit;

*Teacher Assessment shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

COURSE OBJECTIVES

The student will have ability to:

- 1. Know how to build simple knowledge-based systems.
- 2. Know various AI search algorithms (uninformed, informed, heuristic, constraint satisfaction, genetic algorithms).
- 3. Ability to apply knowledge representation, reasoning, and machine learning techniques to real-world problems.
- 4. An ability to use current techniques, skills, and tools necessary for computing practice

COURSE OUTCOMES

Upon completion of the subject, students will be able to:

- 1. Describe the key components of the artificial intelligence (AI) field and its relation and role in Computer Science;
- 2. Identify and describe artificial intelligence techniques, including search heuristics, knowledge representation, automated planning and agent systems, machine learning, and probabilistic reasoning;
- 3. Identify and apply AI techniques to a wide range of problems, including complex problem solving via search, knowledge-base systems, machine learning, probabilistic models, agent decision making, etc.;
- 4. Design and implement appropriate AI solution techniques for such problems;

Chairperson
Board of Studies
Shri Vaishnav Vidyapeeth Vishwavidyalaya

Rojavat

Bachelor of Technology (Computer and Communication Engineering)(2016-17) Choice Based Credit System (CBCS)

- 5. Analyze and understand the computational trade-offs involved in applying different AI techniques and models.
- 6. Communicate clearly and effectively using the technical language of the field correctly.

SYLLABUS

UNIT-I

Introduction To Al And Production Systems:

Introduction to AI-Problem formulation, Problem Definition Production systems, Control strategies, Search strategies. Problem characteristics, Production system characteristics —Specialized productionsystem—Problem solving methods—Problem graphs, Matching, Indexing and Heuristic functions—Hill Climbing-Depth first and Breath first, Constraints satisfaction—Related algorithms, Measure of performance and analysis of search algorithms.

UNIT-II

REPRESENTATION OF KNOWLEDGE

Knowledge Representation Issues: Representations and Mappings, Approaches to Knowledge Representation. Knowledge representation using Predicate logic, Introduction to predicate calculus, Resolution, Use of predicate calculus, Knowledge representation using other logic-Structured representation ofknowledge.

UNIT-III

KNOWLEDGE INFERENCE

Knowledge Inference -Production based system, Frame based system. Inference - Backward chaining, Forward chaining, Rule value approach, Fuzzy reasoning - Certainty factors, Bayesian Theory-Bayesian Network-Dempster - Shafer theory.

UNIT IV

PLANNING AND MACHINE LEARNING

Basic plan generation systems - Strips -Advanced plan generation systems - K strips -Strategic explanations -Why, Why not and how explanations. Learning- Machine learning, adaptive Learning. Game Playing: Overview, And Example Domain: Overview, Mini-Max, Alpha-Beta Cut-off, Refinements, Iterative deepening, The Blocks World, Components Of A Planning System, Goal Stack Planning, Nonlinear Planning Using Constraint Posting, Hierarchical Planning, Reactive Systems, Other Planning Techniques.

UNIT-V

Chairperson
Board of Studies
Shri Vaishnav Vidyapeeth Vishwavidyalaya
Indore

Rojavas

Bachelor of Technology (Computer and Communication Engineering)(2016-17) Choice Based Credit System (CBCS)

EXPERT SYSTEMS

Expert Systems - Architecture of expert systems, Roles of expert systems - Knowledge Acquisition – Meta knowledge, Heuristics. Typical expert systems - MYCIN, DART, XOON, Expert systems shells.

TEXT BOOKS:

- 1. Rich E and Knight K, Artificial Intelligence, TMH New Delhi.
- 2. Nelsson N.J., Principles of Artificial Intelligence, Springer Verlag, Berlin.
- 3. Kos Ko B, Neural Networks and Fuzzy system –PHI.

REFERENCES:

- 1. Neural Network, Fuzzy Logic, and Genetic Algorithms Synthesis and Applications", by S. Rajasekaran and G.A. VijayalaksmiPai, (2005), Prentice Hall, Chapter 1-15, page 1-435.
- 2. "Artificial Intelligence: A Modern Approach" by Stuart Russell and Peter Norvig, (2002), Prentice Hall, Chapter 1-27, page 1-1057.
- 3. Waterman D.A., A guide to Expertsystem, Adision Wesley, Reading
- 4. Artificial Intelligence Hand book, Vol. 1-2, ISA, Research Triangle Park.
- 5. Haykin S, Artificial Neural Networks-Comprehensive Foundation, Asea, Pearson.
- 6. Barr A, Fergenbaub E.A. and Cohen PR. Artificial Intelligence, Addison Wesley, Reading

LIST OF EXPERIMENTS:

- 1. Write a program to implement Tic-Tac-Toe game problem.
- 2. Write a program to implement BFS (for 8 puzzle problem or Water Jug problem or any AI search problem).
- 3. Write a program to implement DFS (for 8 puzzle problem or Water Jug problem or any AI search problem)
- 4. Write a program to implement Single Player Game (Using Heuristic Function)
- 5. Write a program to Implement A* Algorithm.
- 6. Write a program to solve N-Queens problem.
- 7. Write a program to solve 8 puzzle problems.
- 8. Write a program to solve travelling salesman problem.

Chairperson
Board of Studies
Shri Vaishnav Vidyapeeth Vishwavidyalaya

Rojavos

Bachelor of Technology (Computer and Communication Engineering)(2016-17) Choice Based Credit System (CBCS)

				TEAC	HING &	& EVAL	UATION	SCH	EME		
			TH	IEORY		PRAC'	ΓICAL				
COURSE CODE	Category	COURSE NAME	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	Th	Т	P	CREDITS
BTIT512	-	Information theory and coding	60	20	20	30	20	3	1	2	5

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit;

COURSE OBJECTIVES

- 1. Students will be introduced to calculate entropy, channel capacity, bit error rate, code rate, and steady-state probability.
- 2. Students will be introduced to convolution and block codes, decoding techniques.
- 3. Students will understand how error control coding techniques are applied in communication systems.
- 4. Students will be able to describe the real life applications based on fundamental theory.
- 5. Students will implement the encoder and decoder of one block code using any programming language.

COURSE OUTCOMES

Upon completion of the subject, students will be able to:

- 1. Derive equations for entropy mutual information and channel capacity for all types of channels.
- 2. Distinguish between different types error correcting codes based on probability of error and bit Energy to noise ratio.
- 3. Design a digital communication system by selecting an appropriate error correcting codes for a particular application.
- 4. Explain various methods of generating and detecting different types of error correcting codes.
- 5. Formulate the basic equations of linear block codes.
- 6. Compare the performance of digital communication system by evaluating the probability of error for different error correcting codes

Chairperson
Board of Studies
Shri Vaishnav Vidyapeeth Vishwavidyalaya

Rojavat

^{*}Teacher Assessment shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

Bachelor of Technology (Computer and Communication Engineering)(2016-17) Choice Based Credit System (CBCS)

SYLLABUS

UNIT-I

Information Theory, Probability and Channel: Introduction, Information Measures, Review probability theory, Random variables, Processes, Mutual Information, Entropy, Uncertainty, Shannon's theorem, redundancy, Huffman Coding, Discrete random Variable. Gaussian random variables, Bounds on tail probabilities.

UNIT-II

Stochastic Processes: Statistical independence, Bernoulli Process, Poisson Process, Renewal Process, Random Incidence, Markov Modulated Bernoulli Process, Irreducible Finite Chains with Aperiodic States, Discrete-Time Birth-Death Processes, Markov property, Finite Markov Chains, Continuous time Markov chain, Hidden Markov Model.

UNIT-III

Error Control Coding: Channel Coding: Linear Block Codes: Introduction, Matrix description, Decoding, Equivalent codes, Parity check matrix, Syndrome decoding, Perfect codes Hamming Codes, Optimal linear codes. Maximum distance separable (MDS) codes. Cyclic Codes: Introduction, generation, Polynomials, division algorithm, Matrix description of cyclic codes, burst error correction, Fire Codes, Golay Codes, and CRC Codes..

UNIT-IV

BCH Codes: Introduction, Primitive elements, Minimal polynomials, Generator Polynomials in terms of Minimal Polynomials, Decoding of BCH codes. Advance Coding Techniques: Reed-Solomon codes, space time codes, concatenated codes, turbo coding and LDPC codes, Nested Codes, block. Techniques for constructing more complex convolution codes with both soft and hard decoding

UNIT-V

Convolutional channel coding: Introduction, Linear convolutional codes, Transfer function representation & distance properties, Decoding convolutional codes(Soft-decision MLSE, Hard-decision MLSE), The Viterbi algorithm for MLSE, Performance of convolutional code decoders, Soft & Hard decision decoding performance, Viterbi algorithm implementation issues: RSSE, trellis truncation, cost normalization, Sequential decoding: Stack, Fano, feedback decision decoding, .

TEXT BOOKS:

- 1. Rajan Bose "Information Theory, Coding and Cryptography", TMH, 2002.
- 2. Kishor S. Trivedi "Probability and Statistics with Reliability, Queuing and Computer Science Applications", Wiley India, Second Edition.
- 3. J.C.Moreira, P.G. Farrell "Essentials of Error-Control Coding", Willey Student Edition

Chairperson
Board of Studies
Shri Vaishnav Vidyapeeth Vishwavidyalaya

Rojavat

Bachelor of Technology (Computer and Communication Engineering)(2016-17) Choice Based Credit System (CBCS)

- 4. San Ling and Chaoping "Coding Theory: A first Course", Cambridge University Press, 2004.
- 5. G A Jones J M Jones, "Information and Coding Theory", Springer Verlag, 2004.

REFERENCES:

- 1. Cole, "Network Security", Bible, Wiley INDIA, Second Addition
- 2. Proakis and Masoud, "Digital Communication", McGraw-Hill, 2008.
- 3. Principles of Digital Communications, Signal representation, Detection, Estimation &Information
- 4. Coding by J Das, S.K. Mullick, P.K. Chatterjee, New Age Int. Ltd.
- 5. Principles of Communication Systems, Taub&Schilling, 2/e, TMH Publishers

LIST OF EXPERIMENTS:

- 1. Write a program for determination of various entropies and mutual information of a given channel Test various types of channel such as a) Noise free channel. b) Error free channel c) Binary symmetric channel d) Noisy channel Compare channel capacity of above channels.
- $2. \ \ Write a program for generation and evaluation of variable length source coding using C/MATLAB$
 - a) Shannon Fano coding and decoding
 - b) Huffman Coding and decoding
 - c) Lempel Ziv Coding and decoding
- 3. Write a Program for coding & decoding of Linear block codes.
- 4. Write a Program for coding & decoding of Cyclic codes.
- 5. Write a program for coding and decoding of convolution codes.
- 6. Write a program for coding and decoding of BCH and RS codes.
- 7. Write a program to study performance of a coded and uncoded communication system (Calculate the error probability).
- 8. Write a simulation program to implement source coding and channel coding for transmitting a text file.
- 9. Encoding the data bits using a Binary Cyclic block encoder in Simulink.
- 10. Decoding the code words using a Binary Cyclic block decoder in Simulink.
- 11. Encoding the data bits using a Binary Linear block encoder in Simulink.
- 12. Decoding the code words using Binary Linear block decoder in Simulink.

Chairperson
Board of Studies
Shri Vaishnav Vidyapeeth Vishwavidyalaya
Indore

Rojavat

Bachelor of Technology (Computer and Communication Engineering)(2016-17) Choice Based Credit System (CBCS)

			TEACHING & EVALUATION SCHEME									
			Т	HEORY	•	PRAC'	ΓICAL					
COURSE CODE	CATEGORY	COURSE NAME	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	Th	Т	P	CREDITS	
BTCS702		Big Data And Hadoop	60	20	20	30	20	3	1	2	5	

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit;

COURSE OBJECTIVES:

The objectives of this course are to make the students to:

- 1. Introduce students to Big Data Analysis using hadoop
- 2. Introduce to Hadoop Eco System, HDFS, commands, management and map reduce.
- 3. Understating machine learning concept and Introduce JAQL, pig and HIVE
- 4. Data stream, partitioning, debugging and toolkits

COURSE OUTCOMES:

At the end of the course, students shall be able to:

- 1. Install Hadoop, configure HDFS, Install Zookeeper, Pig Installation, Sqoop Installation, Hbase Installation run commands
- 2. Use Zookeeper, Sqoop, Hbase, JAQL, PIG & HIVE
- 3. Use BigInsite, data streams, partitioning and other toolkits
- 4. appreciate the influence of big data for business decisions and approach

SYLLABUS:

UNIT I

Introduction about big data ,Describe details Big data: definition and taxonomy , explain Big data value for the enterprise , Setting up the demo environment ,Describe Hadoop Architecture , Hadoop Distributed File System, MapReduce & HDFS , First steps with the Hadoop , Deep to understand the fundamental of MapReduce

UNIT II -

Chairperson
Board of Studies
Shri Vaishnav Vidyapeeth Vishwavidyalaya
Indore

Rejoved

^{*}Teacher Assessment shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

Bachelor of Technology (Computer and Communication Engineering)(2016-17) Choice Based Credit System (CBCS)

Hadoop ecosystem, Installing Hadoop Eco System and Integrate With Hive Installation , Pig Installation ,Hadoop , Zookeeper Installation , Hbase Installation , , Sqoop Installation, Installing Mahout Introduction to Hadoop , Hadoop components: MapReduce/Pig/Hive/HBase, Loading data into Hadoop, Getting data from Hadoop.

UNIT III

Using Hadoop to store data, Learn NoSQL Data Management, Querying big data with Hive, Introduction to the SQL Language , From SQL to HiveQL , Querying big data with Hive, Introduction to HIVE e HIVEQL, Using Hive to query Hadoop files. Moving the Data from RDBMS to Hadoop , Moving the Data from RDBMS to Hbase , Moving the Data from RDBMS to Hive

UNIT IV

Big data & Machine learning , Quick into to Machine learning , , Machine learning tools , Spark & Spark ML , H2O , Azure ML.

UNIT V

Monitoring The Hadoop Cluster, Monitoring Hadoop Cluster, Monitoring Hadoop Cluster with Nagios , Monitoring Hadoop Cluster, Real Time Example in Hadoop , Apache Log viewer Analysis , Market Basket Algorithms Big Data Analysis in Practice , Case Study , Preparation of Case Study Report and Presentation , Case Study Presentation

TEXT BOOKS:

- 1. Tom White," Hadoop: The Definitive Guide Paperback 2015" Shroff Publishers & Distributers Private Limited Mumbai; Fourth edition (2015).
- 2. V. K. Jain (Author)," Big Data and Hadoop" Khanna Publishers; 1 edition (1 June 2015)
- 3. Jason Bell (Author) "Machine Learning for Big Data: Hands-On for Developers and Technical Professionals" Wiley (2014)
- 4. Big Data Analytics & Hadoop by IBM ICE Publications

REFERENCES:

- 1. Big data. Architettura, tecnologie e metodi per l'utilizzo di grandi basi di dati, A. Rezzani, Apogeo Education, 2013
- 2. Hadoop For Dummies, Dirk deRoos, For Dummies, 2014
- 3. Cohen et al. "MAD Skills: New Analysis Practices for Big Data", 2009
- 4. Ullman, Rajaraman, Mining of Massive Datasets, Chapter 2
- 5. Stonebraker et al., "MapReduce and Parallel DBMS's: Friends or Foes?", Communications of the ACM, January 2010.

Chairperson
Board of Studies
Shri Vaishnav Vidyapeeth Vishwavidyalaya

Pionos

Bachelor of Technology (Computer and Communication Engineering)(2016-17) Choice Based Credit System (CBCS)

6. Dean and Ghemawat, "MapReduce: A Flexible Data Processing Tool", Communications of the ACM, January 2010.

LIST OF PRACTICAL'S:

- 1. Installing Hadoop, configure HDFS, Install Zookeeper, Pig Installation, Sqoop Installation, Hbase Installation
- 2. Configuring Hadoop
- 3. Running jobs on Hadoop
- 4. Working on HDFS
- 5. Hadoop streaming
- 6. Creating Mapper function using python.
- 7. Creating Reducer function using python
- 8. Python iterator and generators
- 9. Twitter data sentimental analysis using Flume and Hive
- 10. Business insights of User usage records of data cards
- 11. Wiki page ranking with hadoop
- 12. Health care Data Management using Apache Hadoop ecosystem

Chairperson
Board of Studies
Shri Vaishnav Vidyapeeth Vishwavidyalaya
Indore

Rojava

Bachelor of Technology (Computer and Communication Engineering)(2016-17) Choice Based Credit System (CBCS)

			TEACHING & EVALUATION SCHEME									
			TH	IEORY		PRAC'	ΓICAL					
COURSE CODE	Category	COURSE NAME	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	Th	Т	P	CREDITS	
BTIT406		Unix and Shell Programming Lab	-	-	-	-	50	•	-	2	1	

Legends: L-Lecture; T-Tutorial/Teacher Guided Student Activity; P–Practical; C-Credit; Q/AQuiz/Assignment/Attendance, MST Mid Semester Test.

COURSE OBJECTIVES:

The course content should be taught and implemented with the aim to develop required skills so that students are able to acquire following competency:

• Know the basics of UNIX operating system and shell programming.

COURSE OUTCOMES:

- Work on any Unix platform with confidence
- Write the code in C language on UNIX platform.
- Write effective scripts for their day to day jobs
- Understand and use most of the Unix features and commands

Syllabus:

Unit-I: Introduction to UNIX

The UNIX Operating System, The UNIX Architecture, Features of UNIX, Internal And External Commands, Command Structure.

GENERAL-PURPOSE UTILITIES: cal, date, echo, printf, bc, script, passwd, PATH, who, uname, tty, stty, pwd, cd, mkdir, rmdir, od.

Unit-II: Handling Files and C Environment

The File System, cat, cp, rm, mv, more, file, ls, wc, pg, cmp, comm, diff, gzip, tar, zip, df, du, mount, umount, chmod, The vi editor ,security by file Permissions. NETWORKING COMMANDS: ping, telnet, ftp, finger, arp, rlogin.

The C compiler, vi editor, compiler options, and run the programs.

Chairperson
Board of Studies
Shri Vaishnav Vidyapeeth Vishwavidyalaya
Indore

Rojavat

^{*}Teacher Assessment shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks

Bachelor of Technology (Computer and Communication Engineering)(2016-17) Choice Based Credit System (CBCS)

Unit-III: Shell Basics

Types of shells, Shell functionality, Work Environment, Writing script & executing basic script, Debugging script, Making interactive scripts, Variables (default variables), Mathematical expressions. Conditional statements: If-else-elif, Test command, Logical operators-AND, OR, NOT, Case —esac. Loops: While, For, Until, Break & continue.

Unit- IV: Command Line Arguments and Regular Expression

Command line arguments: Positional parameters, Set & shift, IFS. Functions & file manipulations: Processing file line by line, Functions. Regular Expression & Filters: What is regular expression, Grep, cut, sort commands, Grep patterns.

Unit -V:SED and AWK

SED: Scripts, Operation, Addresses, commands, Applications, grep and sed.

AWK: Execution, Fields and Records, Scripts, Operations, Patterns, Actions, Associative Arrays, String Functions, String Functions, Mathematical Functions, User – Defined Functions, Using System commands in awk, Applications, awk and grep, sed and awk.

REFERENCES:

- 1. Graham Glass, King Ables, "Unix for programmers and users", 3rd Edition, Pearson Education, 2009.
- 2. N.B Venkateswarlu, "Advanced Unix programming", 2ndEdition, BS Publications, 2010.
- 3. YashwanthKanitkar,"Unix Shell programming", 1stEdition, BPB Publisher, 2010.
- 4. Sumitabha Das, "Unix Concepts and Applications", 4thEdition. TMH, 2006.
- 5. Behrouz A. Forouzan, Richard F. Gilbery, "Unix and shell Programming", 1stEdition, Cengage Learning India, 2003.

LIST OF EXPERIMENTS:

- 1. Installation of Unix/Linux operating system.
- 2. Study of Unix general purpose utility command list obtained from (man, who, cat, cd, cp, ps, ls, mv, rm, mkdir, rmdir, echo, more, date, time, kill, history, chmod, chown, finger, pwd, cal, logout, shutdown) commands.
- 3. Study of vi editor.
- 4. Study of Bash shell, Bourne shell and C shell in Unix/Linux operating system.
- 5. Write a C program to check whether the given string is palindrome or not using Command line substitution.
- 6. Write a C program to check the given integer is prime or not.
- 7. Write a C program to check whether the given number is Avogadro number or not.
- 8. Write a C program that accept two integers as its arguments and computes the value of first number raised to the power of second number.
- 9. Write a shell script program to display list of user currently logged in.

Chairperson
Board of Studies
Shri Vaishnav Vidyapeeth Vishwavidyalaya

Poioual

Bachelor of Technology (Computer and Communication Engineering)(2016-17) Choice Based Credit System (CBCS)

- 10. Write a shell script program to display "HELLO WORLD".
- 11. Write a shell script program to develop a scientific calculator.
- 12. Write a shell Script program to check whether the given number is even or odd.
- 13. Shell script Program to search whether element is present is in the list or not.
- 14. Shell script program to check whether given file is a directory or not.
- 15. Shell script program to count number of files in a Directory.
- 16. Shell script program to copy contents of one file to another.
- 17. Create directory, write contents on that and Copy to a suitable location in your home directory.
- 18. Use a pipeline and command substitution to set the length of a line in file to a variable.
- 19. Write a program using sed command to print duplicated lines of Input.
- 20. Write a grep/egrep script to find the number of words character, words and lines in a file.
- 21. Write an awk script to develop a Fibonacci series.
- 22. Write an awk script to display the pattern of given string or number.
- 23. Write an egrep script to display list of files in the directory.

Chairperson
Board of Studies
Shri Vaishnav Vidyapeeth Vishwavidyalaya

Rejovat

Bachelor of Technology (Computer and Communication Engineering)(2016-17) Choice Based Credit System (CBCS)

			TEACHING & EVALUATION SCHEME									
			TH	EORY		PRAC'	ΓICAL					
COURSE CODE	Category	COURSE NAME	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	Th	Т	P	CREDITS	
BTCS607	-	Scripting Languages	-	-	-	30	20	-	-	4	2	

 $\textbf{Legends} \hbox{: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit;}$

COURSE OBJECTIVES

The student will have ability to:

- 1. To understand different types of scripting languages.
- 2. To gain knowledge about client side scripts and server side scripting.
- 3. To learn about PHP, PERL and Python languages and their usage in implementation.
- 4. To build web application project using scripting languages.

COURSE OUTCOMES

Upon completion of the subject, students will be able to:

- 1. Student will be Able to understand difference between scripting languages.
- 2. Student will be able to create programs using functions, control structures.
- 3. Student will learn implementation of scripting languages on different tools
- 4. Student can apply knowledge of scripting languages for creating a web application project using scripting languages implementation.

SYLLABUS

UNIT-I

Introduction of scripting languages, need of scripting, characteristics of scripting languages, uses of scripting languages, Introduction of client side scripting languages like JavaScript, VBScript, HTML5 (Structure), CSS3 (Designing), AJAX, jQuery, Server side scripting languages like PHP, ASP.NET (C# OR Visual Basic), C++, Java and JSP, Python, Ruby on Rails.

UNIT-II

PHP basic features, Embedding php code in your web pages, outputting the data to the browser, data types, variables, constants, expressions, string interpolation, control structure, function, creating a function, function library, Arrays, String & regular expression, Web forms, Files, Authentication, Uploading file with PHP, sending email using PHP.

Chairperson Board of Studies Shri Vaishnav Vidyapeeth Vishwavidyalaya

Rojavas

^{*}Teacher Assessment shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

Bachelor of Technology (Computer and Communication Engineering)(2016-17) Choice Based Credit System (CBCS)

UNIT-III

Python: Introduction to python languages, python syntax, statements, functions, build-in functions, methods, module in python, exception handling, integrated web application in python- Building small, efficient python web system, web application framework.

UNIT-IV

Introduction to perl and scripting, scripts,programs, Web scripting and PERL names, values, variable, scalar expression, control structures, arrays, list, hashes, strings, patterns, and regular expression, subroutine.

UNIT-V

Introduction of Angular JS, Industrial usage of angular JS.benefits of Angular JS, Creation of Web application project using database, scripting, HTML, & CSS.

TEXT BOOKS:

- 1. The World of Scripting Languages, David Barron, Wiley Publications.
- 2. Python Web Programming, Steve Holden and David Beazley, New Riders Publications.
- 3. Beginning PHP and MySQL, 3" Edition, Jason Gilmore, Apress Publications (Dream tech.).

REFERENCES:

- 1. Open Source Web Development with LAMP using Linux, Apache, MySQL, Pen and PHP, J.Lee and B.Ware(Addison Wesley) Pearson Education.
- 2. Programming Python, M. Lutz, SPD.
- 3. PHP 6 Fast and Easy Web Development, Julie Meloni and Matt Telles, Cengage Learning Publications.
- 4. PHP 5.1,1.Bayross and S.Shah, The X Team, SPD.
- 5. Core Python Programming, Chun, Pearson Education.
- 6. Guide to Programming with Python, M.Dawson, Cengage Learning.
- 7. Pen by Example, E.Quigley, Pearson Education.
- 8. Programming Perl, Larry Wall, T. Christiansen and J. Orwant, O'Reilly, SPD.
- 9. Tcl and the Tk Tool kit, Ousterhout, Pearson Education.
- 10. PHP and MySQL by Example, E.Quigley, Prentice HalI(Pearson).
- 11. Perl Power, J.RFlynt, Cengage Learning.
- 12. PHP Programming solutions, V. Vaswani, TMH.

LIST OF EXPERIMENTS:

Rejovat

Board of Studies
Shri Vaishnav Vidyapeeth Vishwavidyalaya
Indore

Bachelor of Technology (Computer and Communication Engineering)(2016-17) Choice Based Credit System (CBCS)

- 1. Javascript program to generate Fibonacci series and to look for motifs and patterns in sequences.
- 2. Javascript program to find out frequency of characters existing in nucleotide and protein sequences 6 Javascript's implementation to generate dynamic HTML pages.
- 3. Write PHP programs to do basic operations to deal with strings, and arrays, and to implement various mathematical functions.
- 4. Development of an PHP program to take set of sequences and find out conserved sequences.
- 5. Create a MySQL database tables and execute all SQL queries.
- 6. Write a PHP program to connect MySQL database and execute all SQL commands.
- 7. Construct a PHP interface for a given Web page and to produce its overall connectivity.
- 8. Implement database and server site connectivity all together to generate complete dynamic web based applications through PHP, HTML and MySQL.
- 9. Write programs in Perl to implement string handling and other functions to be implemented to deal with biological data management.
- 10. Write PHP programs to do basic server side programming.

Chairperson
Board of Studies
Shri Vaishnav Vidyapeeth Vishwavidyalaya
Indore

Rojavat